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Filter Design Techniques
• Filter

– Filter is a system that passes certain 
frequency components and totally 
rejects all others

• Stages of the design filter
– Specification of the desired properties 

of the system
– Approximation of the specification using 

a causal discrete-time system
– Realization of the system
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Review of discrete-
time systems

Frequency response :
• periodic : period = 
• for a real impulse response h[k] 

Magnitude response                    is even function
Phase response                  is odd function

• example :
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Review of discrete-
time systems

`Popular’ frequency responses for filter design :
low-pass (LP)            high-pass (HP)          band-pass (BP)

band-stop multi-band …

π π

π π

π

π



Filter Design-FIR  (cwliu@twins.ee.nctu.edu.tw) 4

Review of discrete-
time systems

“FIR filters” (finite impulse response):

• “Moving average filters” (MA filters)
• N poles at the origin z=0 (hence guaranteed stability) 
• N zeros (zeros of B(z)), “all zero” filters
• corresponds to difference equation

• impulse response
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Linear Phase FIR Filters
Non-causal zero-phase filters :

example: symmetric impulse response 
h[-L],….h[-1],h[0],h[1],...,h[L]
h[k]=h[-k], k=1..L

frequency response is

- i.e. real-valued (=zero-phase) transfer function
- causal implementation by introducing (group) delay             
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Linear Phase FIR Filters
• Causal linear-phase filters = non-causal zero-phase + 

delay
example: symmetric impulse response & N even 

h[0],h[1],….,h[N]
N=2L (even)
h[k]=h[N-k], k=0..L

frequency response is

= i.e. causal implementation of zero-phase filter, by   
introducing (group) delay                       
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Linear Phase FIR Filters
Type-1                 Type-2                  Type-3                 Type-4
N=2L=even           N=2L+1=odd          N=2L=even           N=2L+1=odd
symmetric            symmetric anti-symmetric     anti-symmetric
h[k]=h[N-k]          h[k]=h[N-k]          h[k]=-h[N-k]        h[k]=-h[N-k] 

zero at                   zero at   zero at

LP/HP/BP             LP/BP                                      HP
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Linear Phase FIR Filters
• efficient direct-form realization. 

example:

• PS: IIR filters can NEVER have linear-phase property ! 
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Filter Specification
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Filter Design Problem
• Design of filters is a problem of 

function approximation

• For FIR filter, it implies polynomial 
approximation

• For IIR filter, it implies 
approximation by a rational function 
of z
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Filter Design by Optimization
(I)  Weighted Least Squares Design :
• select one of the basic forms that yield linear phase

e.g. Type-1 

• specify desired frequency response (LP,HP,BP,…) 

• optimization criterion is

where               is a weighting function 
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Filter Design by Optimization
• …this is equivalent to

=standard ‘Quadratic Optimization’ problem 

[ ]

[ ]
...  

)cos(...)cos(1)(

)()()(

)()()(

...

}2{min

0

0

10

),...,( 0

=
=

=

=

=

+−

∫

∫

μ
ωωω

ωωωω

ωωωω

μ

π

π

Lc

dcAWp

dccWQ

aaax

pxQxx

T

d

T

L
T

aaF

TT

x

L 444 8444 76

pQxOPT
1−=



Filter Design-FIR  (cwliu@twins.ee.nctu.edu.tw) 13

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

Passband Ripple

Stopband Ripple

Passband Cutoff -> <- Stopband Cutoff

Filter Design by 
Optimization

• Example: Low-pass design 

optimization function is 

i.e. 
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Filter Design by Optimization
• a simpler problem is obtained by replacing the F(..) by…

where the wi’s are a set of n sample frequencies
The quadratic optimization problem is then equivalent to a least-squares 
problem

+++ : simple
--- : unpredictable behavior in between sample frequencies.
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Filter Design by Optimization
• …then all this is often supplemented with 

additional constraints

Example: Low-pass (LP) design     (continued) 
pass-band ripple control :

stop-band ripple control :

ripple)  band-pass is (    ,1)( PP δωωδω PA <≤−

ripple)  band-stop is (    ,)( SS δπωωδω ≤≤≤ SA
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Filter Design by Optimization
Example: Low-pass (LP) design     (continued) 

a realistic way to implement these constraints, is to impose 
the constraints (only) on a set of sample frequencies

in the pass-band
and                           in the stop-band

The resulting optimization problem is :
minimize : 

subject to                    (pass-band constraints)
(stop-band constraints)               

=  `Quadratic Linear Programming’ problem
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Filter Design by Optimization
(II)  `Minimax’ Design :
• select one of the basic forms that yield linear phase

e.g. Type-1 

• specify desired frequency response (LP,HP,BP,…) 

• optimization criterion is 

where               is a weighting function 
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Filter Design by Optimization
• Conclusion:

(I) weighted least squares design
(II) minimax design
provide general `framework’, procedures to 
translate filter design problems into standard 
optimization problems

• In practice (and in textbooks):
emphasis on specific (ad-hoc) procedures : 
- filter design based on ‘windows’
- equi-ripple design
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Filter Design using ‘Windows’
Example : Low-pass filter design
• ideal low-pass filter is

• hence ideal time-domain impulse response is

• truncate hd[k] to N+1 samples :

• add (group) delay to turn into causal filter
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Filter Design using ‘Windows’
Example : Low-pass filter design (continued)
• note : it can be shown that time-domain truncation corresponds to  

solving a weighted least-squares optimization problem with the 
given Hd, and weighting function           

• truncation corresponds to applying a ‘rectangular window’ :

• +++: simple procedure (also for HP,BP,…)
• --- : truncation in the time-domain results in ‘Gibbs effect’ in the 

frequency domain, i.e. large ripple in pass-band and stop-band, 
which cannot be reduced by increasing the filter order N.
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Filter Design using ‘Windows’
Remedy : apply windows other than rectangular window:
• time-domain multiplication with a window function w[k] 

corresponds to frequency domain convolution  with W(z) :

• candidate windows : Han, Hamming, Blackman, Kaiser,…. (see 
textbooks)

• window choice/design = trade-off between side-lobe levels
(define peak pass-/stop-band ripple) and width main-lobe 
(defines transition bandwidth) 
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Windowing Effect

Gibbs phenomenon
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Windowing
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Equiripple Design
• Starting point is minimax criterion, e.g.

• Based on theory of Chebyshev approximation and the ‘alternation 
theorem’, which (roughly) states that the optimal ai’s are such that 
the ‘max’ (maximum weighted approximation error) is obtained at 
L+2 extremal frequencies…

…that hence will exhibit the same maximum ripple  (‘equiripple’)
• Iterative procedure for computing extremal frequencies, etc. 

(Remez exchange algorithm, Parks-McClellan algorithm) 
• Very flexible, etc., available in many software packages
• Details omitted here (see textbooks)

)(maxmin)()()(maxmin
0,...,0,..., 00

ωωωω
πωπω

EAAW
LL aadaa ≤≤≤≤

=−

2,..,1for     )()(max
0

+==
≤≤

LiEE iωω
πω



Filter Design-FIR  (cwliu@twins.ee.nctu.edu.tw) 25

Software
• FIR Filter design abundantly available in 

commercial software
• Matlab:

b=fir1(n,Wn,type,window), windowed linear-phase FIR design, 
n is filter order, Wn defines band-edges, type is 
`high’,`stop’,…

b=fir2(n,f,m,window),  windowed FIR design based on inverse 
Fourier transform with frequency points f and 
corresponding magnitude response m

b=remez(n,f,m), equiripple linear-phase FIR design with 
Parks-McClellan (Remez exchange) algorithm


